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Direct methods are applied to the difference structure factors for a structure containing one or more 
heavy atoms in known positions. The present procedure is initiated by subtracting the known heavy- 
atom contribution from the observed structure factor (assuming that the observed and calculated struc- 
ture factors have the same phase) to obtain the magnitude and phase of the light-atom contribution. 
The Y.2 phase relationship (tangent formula) is used to recalculate the phases of the light-atom con- 
tributions, and - consequently - to recalculate the magnitude of the light-atom contribution. An 
iterative procedure is used to optimize the phases and amplitudes before a difference Fourier map is 
calculated. The method is applicable also for the solution of partially known structures. 

Introduction 

In paper I (Beurskens & Noordik, 1971) and in paper 
II (Gould, van den Hark & Beurskens, 1975) direct 
methods were used to solve the phase problem, or to 
speed up the solution, for centrosymmetric structures 
containing one or more heavy atoms on known posi- 
tions. The present paper deals with the non-centro- 
symmetric case. A procedure to handle the special case 
in which the known heavy atoms do not completely 
fix the origin and/or enantiomorph is under investiga- 
tion. The ge0eral case* is discussed in this paper. 

The positions of the known (heavy) atoms determine 
the structure; the phase problem is solved in principle: 
the positions of the remaining (light) atoms can be 
found by standard Patterson or Fourier techniques. 
The time and effort necessary for finding the light-atom 
structure is reduced by the present procedure, espe- 
cially when the heavy atoms are only marginally suf- 
ficient to solve the phase problem. 

Define for a reflexion h: 

IFobsl 

F~ 

~0n 
F~ 

~0L 
Fobs 

observed structure factor amplitude, on abso- 
lute scale. 
calculated contribution of the known part of 
the structure ('heavy' atoms). 
phase of Fn. 
contribution of the remaining part of the struc- 
ture ('light' atoms), or: the most probable 
estimate for this contribution. 
phase of FL. 
a phased value for the observed structure am- 
plitude, defined by: 

Fobs=FL + FH . (1) 

Possible solutions to this equation, for given 
IFobsl, ~0, and Fn values will be discussed below. 

* A Fortran program for the execution of this procedure, 
DIRDIF. D, is available on request. 

In conventional procedures, the difference Fourier 
coefficients, 

dFl=(IFobsl - IF~l) exp i~ou , (2) 

are calculated and accepted as an estimate for F/. Only 
in very favourable circumstances can the complete light- 
atom structure be unambiguously deduced from the 
Fourier synthesis based on these coefficients. In the 
present procedure, a L (tangent formula) refinement 
procedure is used to convert input AF1 values to more 
probable FL values. This procedure depends on a 
probability estimate for AF1, relative to the extreme 
opposite possibility, AFz, 

dF2=(- lFobs l - IF ,  I) exp i~0M, (3) 

where now Fobs is completely out of phase with FH. 
Note, that 

Iz/Fll _< IFLI-< IdFzl. 

(a) (b) 

(c) (d) 

Fig. 1. Definition of AF1 and AF2, and construction of FL for 
case 1: IFHl<lFobsl. (a) IFobsl circle, with calculated Fn. 
(b) Definition of AFt ; FR and Fobs are in phase. (c) Definition 
of AF2; Fn and Fobs out of phase by 180 °. (d) General case; 
~. is assumed to be known. 



TH. E. M. VAN DEN H A R K ,  P E T E R  P R I C K  AND P A U L  T. B E U R S K E N S  817 

Although conventionally AF1 is used as difference 
Fourier coefficient, AF2 will be the more probable 
value for relatively small terms (see below). 

In the present procedure use is made of those re- 
flexions where AF~ is far more probable than A F 2 ,  and 

(a) (b) 
Fobs 

(c) (d) 

Fig. 2. Definition of AFt and AF2, and construction of FL for 
case 2: tFnl > IFobsl. (a)-(d) as in Fig. 1. 

I P(IEI) 

IEll IE21 ----" IEI 

I '(SEa) 

led IE21 -IEI 

t P(IEI) 

! 

i 

IEll levi' = IEI 
Fig. 3. Classification of reflexions depending on IEll and IE21 

pairs. Case (a): IE21>IEd>0"7. Case (b): IE I I<0"7<IE, I .  
Case (c): lEd < IE21 <0.7. 

AF~ is used as a first estimate of FL. The application of 
direct methods then leads to new phases tpL, and the 
magnitude IF/.[ also is to be recalculated, using (1), 
which may be written as 

IFo~sl = IIFLI exp i~0L + Fn[ (4) 

(see Figs. 1 and 2, to be discussed later). 

Normal izat ion of  the difference-structure factors 

A modified, two-dimensional Wilson plot, as described 
in papers I and II, is used to obtain the scale factor K, 
the overall temperature factor of the heavy atoms Bn, 
and the overall temperature factor of the light atoms 
BL. K is used to bring IFobsl onto an absolute scale. Bn 
is used in the calculation of the heavy-atom contribu- 
tions Fn. B/. is used to calculate the normalizing func- 
tion g(h): 

nL 
~ ' f 2 ) 1 / 2  g = (e h / .  jr exp - -  B L sin 2 0/,~, 2 ( 5 )  

j = l  

where nL is the number of unknown (light) atoms in the 
unit cell and eh is the usual factor t o  correct for sym- 
metry enhancement for the reflexion h. The normalized 
difference structure factor is defined as: 

EL=(Fobs--FH)/g (6) 

(for a given reflexion h, if the phase of Fobs is known). 
The above-defined AF1 and AF2 values are brought 
onto the same scale by defining: 

EI=AF~/g and E2=",4F2/g. (7) 

The (initially unknown) EL values correspond to the 
normalized structure factors of a structure consisting 
of only the unknown (light) atoms. Conventional 
direct methods may, in principle, be applied on EL 
values, in cases where they are known. For reflexions 
where E~ is far more probable than E2, we use E1 as an 
initial estimate for EL and use these values to initiate 
a tangent-formula refinement procedure. 

Note: the original IEll values do not form a normal- 
ized set of structure factors; the average of the squares 
of lEvi is less than one. During the refinement of phases, 
the magnitudes o f  IE, I are being increased, on average, 
and the distribution of IE, I values becomes more 
normalized. 

Probabil ity considerations 

The distribution function for non-centrosymmetric re- 
flexions is given by 

P(IEI)=21EI exp - I E I  2. (8) 
This function has a maximum at IEI =½1/2~0"7. The 
occurrence of this maximum forced us to consider three 
distinct cases (Fig. 3). [Note: special reflexions, having 
a centrosymmetric distribution, will be treated ac- 
cordingly; see paper II; we now limit our discussion 
to general (non-centrosymmetric) reflexions]. 

A C 32A - 5* 
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For case (a): lEd >0"7. Many reflexions will have 
both lEd and IE2I greater than 0.7. The number of 
reflexions that belong to this category depends on the 
known fraction of the scattering power; usually it is 
about half the total number of reflexions, or fewer. 

This is the most important case, as lEvi (as well as 
any possible value for IE21) is large enough to be of im- 
portance in a Fourier synthesis and to be useful in the 
application of the tangent formula. For these reflexions 
lEd is more probable than IE21, and E~ may be selected 
and used as a first estimate for EL in cases where the 
probability for lEd is significantly greater than the 
probability for IE21. Analogous to the centrosymmetric 
procedure (Paper II) we now use P1 as a measure for 
the relative probability of the phase of E~: 

P~=P(IE~I)/[P(IE~I)+P(IE21)] , (9) 

and the weight for this reflexion is chosen to be 

W1 = (2P~-  1) 2. (10) 

In principle this is not correct; the weight should be 
based upon the standard deviation a~ for the phase 
of E~, which can be calculated from equation (8) as 

a~=I2p(IEI)[A~o]EdIEI/ IaP(IEI)dIE[ (11) 

where the integration limits are lEd and IE21, and: 

cos A~0=(IE~I. IE21--1EIZ)/(IEzl. I E I - I E t l .  IEI). 

Numerical results are given in Table 1. (These results 
should also be used in the treatment of the weaker 
reflexions.) 

In practice, however, equation (9) gives acceptable 
results for the first input phases for the tangent refine- 
ment procedure, and the weights for the following 
cycles of the refinement will be largely determined by 
the results of the tangent formula. 

For case (b) IEd<0"7<lg21, and for case (c) IE21< 
0.7, the value of IExl is not the most probable value. 
The tangent formula cannot affect the phase of such a 
reflexion; nevertheless E1 or E2 of the reflexion may be 
used as Fourier coefficient if this is justified by its rela- 
tive probability (9) or, better, its standard deviation 
(11). In cases where lEd is very small (equal to or less 
than its estimated error) the reflexion is excluded from 
further calculations. 

Tangent refinement procedure 

The case-(a) reflexions may enter into the tangent 
refinement procedure. As input to the tangent formula 
we use those reflexions where I//11 exceeds a given min- 
imum value greater than 0.7 (say I//11 > 1.2). We then 
use this formula to calculate phases for all reflexions 
where IEll exceeds another minimum greater than 0-7 
(say: IEII > 0"9). 

The tangent formula.may be given as: 

~o~(t)=phase of (EL)h--phase of X2 (12) 

with X2=~WRWh-kEkEh-k and E~, is the most prob- 
k 

able EL value for the reflexion k. Analogous to the 
centrosymmetric formula, and to the formulae (9) and 
(10), we use the following simple expression for the 
relative probability and the corresponding weight: 

Pt=½+½ tanh ~ Z~( ~ Zff)-a/2lEhlSz (13) 
J J 

Wt = ( 2 P , -  1) z (14) 

where Z~ is the number of electrons for the j t h  atom. 
[For the weighted tangent formula, see Germain, Main 
& Woofson (1971).] 

In the first cycle we only have E~ values (with phases 
~o~) as first estimates for EL for the reflexions k and 
( h - k ) .  Whether or not the output phases ~0L are ac- 
cepted depends on the corresponding weights. If Wt > 
W1 then the new phase ~0,~ is accepted with weight W,. 
If Wt </4:1 then the calculated cpL value is only partially 
accepted where I~0L(t)-~0~1 is less than 90°: 

~0,~(new) = ~0~ +(WJW~)[~o,~(t)-~o~]. (15) 

In addition, there is a limitation on [~0,(t)-~0x] for re- 
flexions of category (a2), see below, and ~0L may be 
reset accordingly. The new ~0, value is used to calculate 
a new value for EL, equation (4), which may be used as 
input for the next tangent refinement cycle. 

Note: As a consequence of the definitions of I4:1 and 
Wt [given in equations (10) and (14), which on averag e 
result in a slightly overestimated W1 relative to W,] the 
original phases ~01 still play an important role in the 
second refinement cycle. Using a weighting scheme 
based upon equation (11) calls for the.replacement of 

Table 1. Standard deviations (°) of ~ol for pairs of lEd and IE21 values, calculated from equation (11) 

IEzl = 
IEll =0.3 

0.3 0.6 0.8 1.0 1.2 
104 109 111 111 110 

IEll =0"6 104 101 102 101 
Igxl = 0.8 104 99 98 

lEvi = 1.0 104 97 
lEd = 1.2 104 

IEll = 1.4 

1"4 1"7 2"0 2"5 3"0 4"0 
108 104 99 92 88 82 
99 94 89 81 75 69 
96 91 85 76 70 63 
95 90 83 73 66 58 
96 90 83 71 63 54 

104 92 85 71 61 52 
led = 1.7 104 90 74 " 61 49 

I//11=2.0 104 80 63 47 
IEl1=2"5 104 75 47 

IExl = 3"0 104 51 
lEvi =4-0 104 
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the conventional scheme (14) by a scheme that is based 
upon the standard deviations associated with the tan- 
gent formula. 

Description of the procedure 

We have assumed that the heavy-atom part of the 
structure is known, and that its contribution to the 
structure factors is calculated. Thenormalization pro- 
cedure, described above, will then lead to values for 
]Fob~l, Fn, AF1, AFz, 17,1, Ez, P~ and W~. 

The distinction between several different cases, as 
given above, leads to the following categories of re- 
flexions: (al) ,  (a2), (bl), (b2), (c l )and  (c2). A detailed 
description for each of these categories is given below. 

At the end the final EL values are transformed back 
to F,~ values and used in a weighted Fourier synthesis. 

Category (al) 
For reflexions with [FH] < [Fobs[ we have (see Fig. 1) 

~ox = q~H = ~o2 + 180 °. (16) 

The strongest of these form the category (al). This is the 
most important set of reflexions. In principle all of 
these reflexions may be treated alike; in practice, how- 
ever, a considerable amount of computer time is saved 
by limiting the number of reflexions that enter into the 
tangent refinement procedure. These reflexions will 
have, after four to six cycles of tangent refinement, a 
calculated EL value. If this calculated value is unreli- 
able, then the original Ea value will be used according 
to formula (7). 

The remaining reflexions are those with 0.7 < lEd < 
Em~n (=  say 0"9); for these reflexions the E1 value will 
be used, with its proper weight W~. 

Category (a2) 
For reflexions with IFHI > IFo~sl we have (see Fig. 2): 

~01 = ~o2 = ~0ta + 180 °. (17) 

As can be seen from the diagram in Fig. (2d), there are 
two possible IEL] values for a given phase ~0,; the 
smallest lEd value is the most probable one and, 
naturally, this is the value to be used in our procedure. 
For a given IFob~l and Eta there is a restriction on the 
possible phase values ~0L, see Fig. 4. 

Let us define: 

A~0 = ~L-- ~0x, (18) 

that is: A~0 is the correction to the original ~o~ value; 
we hope to find A~o by the weighted tangent procedure. 

The maximum value for [A~o[ is given by 

sin [A~gmax] = IFobsl/IfHI • (19) 

For IEI1>0"7 and (most likely) IE21<4"0 we have 
A~max=44"6 ° as the largest possible value for A~om,x; 
so the few reflexions in this category have well-deter- 
mined phases and will therefore be given unit weight 
(W1 = 1) in all calculations. If the A~0, calculated by the 
tangent formula (12), exceeds A~0max for the given re- 
flexion, then A~0max is substituted for A~o. In the last 
cycle, however, the calculated A~0 is accepted to allow 
for possible experimental errors in IFob~l and model 
errors in Fn. 

Category (bl) 
Because of the low IExl value the tangent formula 

may lead to incorrect results, and a change in phase, 
leading to larger IE, I values cannot be trusted; so the 
tangent formula is not used at all. Although the re- 
flexions in this category have rather low lEvi values, 
this category is not unimportant because of the large 
number of reflexions. E1 values will be used, with the 
proper weight W~, only in case W1 > I412. Reflexions 
with W~ < W2 are rejected for several reasons [see also 
category (el)]. 

Category (b2) 
The reflexions belonging to this category have reli- 

able phases ~0~ [ W1 = 1, see category (a2)] and are there- 
fore useful for the Fourier synthesis; ~0z is taken as ~01, 
and the absolute value IE,I is taken as its expectation 
value: 

IIIEIP(IEI)dIE[/ flP(IEI)dIE, . (20) 

Category (el) 
For these reflexions E2 is a more probable estimate 

for EL than E1 (in contrast to the conventional defini- 
tion of difference Fourier coefficients). It is certainly 
not useful to put these reflexions as E1 into a Fourier 
synthesis. To use E2 as Fourier coefficients on the other 
hand, may easily lead to an increased Fourier noise 
level because of the thacertainties in IFobsl and Fn. At 
present we reject these reflexions, but we will change 
our computer program as soon as our experiments 
show the usefulness of these reflexions. 

Fig. 4. DefinitiOn of the limiting angle for reflexions with 
IFnl > [Fobsl; ~=A~0,.ax [equation (19)]. 

Category (c2) 
This small set of reflexions is treated like category 

(b2). 

Examples 

The procedure has been used successfully in the struc- 
ture analysis of (HgI2)2CH2(S2CNC4Hlo)2, and of two 
modifications of heptahelicene, C30Hls. In the former 
structure one Hglz unit was found from the Patterson 
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synthesis ,  a n d  we assumed  the space g roup  to be 
Cc; appl ica t ion  of  the p r o g r a m  DIRDIF.D revealed 
the unexpec ted  presence of  a second HgI2 uni t  (Beur- 
skens,  Enckevor t ,  M e n g e r  & Bosman ,  1976). The  ap- 
p l ica t ion  of  DIRDIF.D on the heptahe l icene  struc- 
tures,  where  a f r agment  o f  the s t ruc ture  was found  by 
direct  me thods ,  will be descr ibed in the fo l lowing paper  
(Beurskens,  van  den H a r k  & Beurskens ,  1976). 

Some numer ica l  results  for  a test  s t ruc ture  will be 
given in Tables  2-4  for  4 ,4-d ich loro-2a-aza-A-homo-  
choles tan-3 ,on ,  C27H45NOC12, space g roup  P212121, 
Z = 4  (Moo tz  & Berking,  1970). The  publ i shed  pa ram-  
eters o f  the two chlor ine  a toms  were used as heavy  
a toms ;  the Four i e r  coefficients p roduced  by DIRDIF. D 
gave an e lectron dens i ty  m a p  tha t  revealed the molecule  
m u c h  bet ter  t h a n  the no rma l  difference Four ie r  syn- 
thesis.  The  i m p r o v e m e n t  of  the phases  is shown  in 
Tables  3 and  4. 

Table  2. Number of reflexions of the test structure 
in each of the six categories 

Category Number of reflexions 
(al) 458 (360 reflexions with IEll > 0"9) 
(a2) 62 (18 reflexions with IExl > 0-9) 
(bl) 613 
(b2) 364 
(cl) 399 
(c2) 45 

Conclusions 

The procedure  descr ibed above proved  to be useful in 
rou t ine  s t ructure  analys is  o f  heavy -a tom compounds ,  
as well as for  par t ia l ly  k n o w n  equa l -a tom structures.  
The  special case, where  the or igin a n d / o r  e n a n t i o m o r p h  
is no t  comple te ly  fixed by the k n o w n  par t  of  the struc- 
ture is present ly  be ing studied.  

Ranges in WI 
Category (a 1) 

0"0-0"3 

0-3-0"6 

0"6-0"99. 

> 0-99 

Category (a2) 
WI= 1.0 

Projection reflexions 
0.0-1"0 

Table  3. Results of the tangent refinement procedure for the test structure, for reflexions of the categories 
(a l )  and (a2) with IEll > 0.9 

Average 
Ranges in phase phase Number of 

deviation* 0-30 ° 30-60 ° 60-90 ° 90-180 ° deviation reflexions 

Beforet 6 6 9 15 85 ° 36 
After t 29 4 2 1 20 ° 
Before 6 8 5 6 62 ° 25 
After 22 2 0 1 21 o 
Before 23 21 13 4 45 ° 
After 46 12 3 0 19 ° 61 
Before 51 39 17 6 39 ° 113 
After 98 14 1 0 15 ° 

Before 13 3 1 1 28 ° 18 
After 13 5 0 0 20 ° 

Before 94 - - 31 - 125 
After 121 - - 4 - 

* Phases are compared with the true phases 9¢~t¢, calculated from the final light-atom structure. Before applying the tangent 
formula, the 'phase deviation' of a reflexion is defined as I~Pl - ~Pc~,¢l. After the tangent refinement the 'phase deviation' is defined 
as I~m.- ¢0¢~,cl. 

t Tabulated is the number of reftexions belonging to the specified ranges in W1 and 'phase deviation', before and after the 
tangent refinement. 

Ranges in W1 

Category (al) 
0"0-0"3 Aftert 
0"3-0"6 
0"6-0"99 
> 0"99 

Category (a2) 
WI= 1"0 

* Ranges in [~ol-'q, ca,¢[, see Table 3. 

Tab le  4. Average deviations of refined phases for the test structure 
Ranges in phase 
deviation before 

tangent 
refinement* 0-30 ° 30-60 ° 60-90 ° 90-180 ° 

14 ° (6) 10 ° (6) 26 ° (9) 23 ° (15) 
14 (6) 16 (8) 20 (5) 33 (6) 
12 (23) 22 (21) 29 (13) 6 (4) 
15 (51) 17 (39) 12 (17) 12 (6) 

15 (13) 47 (3) 3 (1) 30 (1) 

t Average in I~P~.- ¢oca,cJ, after the tangent refinement for the reflexions in the given ranges (the number of reflexions is given 
in parentheses). 
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Application of Direct Methods on Difference Fourier Coefficients for the Solution 
of Partially Known Structures 
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A partially known structure, which may be a fragment of a molecule found by direct methods, can be 
solved completely by applying a weighted tangent refinement procedure on difference structure fac- 
tors, similar to the authors' procedure for heavy-atom structures. Often the molecular fragment is 
found to be misplaced with respect to the symmetry elements: then, the space-group symmetry is 
reduced to P 1, and the procedure is used to locate the symmetry elements. 

Introduction 

In previous papers (Gould, van den Hark & Beurskens, 
1975; van den Hark, Prick & Beurskens, 1976) we have 
described a procedure (for centrosymmetric, and non- 
centrosymmetric structures respectively) for the solu- 
tion of heavy-atom structures, where the positions of 
some heavy atoms are known. This procedure is called 
DIRDIF. Naturally, the procedure can also be used 
for equal-atom structures when a molecular fragment 
is known. 

Application of direct methods for the solution of not 
too small structures often leads to an electron density 
map (or E map) from which a molecular fragment can 
be recognized. Patterson search techniques or tangent- 
formula recycling techniques may then be used to com- 
plete the solution of the structure. Often the molecular 
fragment is in the correct orientation but shifted with 
respect to the symmetry elements. The solution of the 

Fig. 1. Carbon skeleton of the heptahelicene molecule. 

structure can then be sought by translation functions, 
or by reducing the space-group symmetry to P 1, where 
any position of the molecular fragment is correct by 
definition. 

For these cases the DIRDIF procedure is a very con- 
venient tool, which is illustrated by the following ex- 
amples. 

Examples 

Heptahelicene, Ca0Hla, (see Fig. 1) crystallizes in two 
modifications: 

(I) Space group P2~; Z = 4 ;  two independent molec- 
ules per unit cell (Beurskens, Beurskens & van den 
Har k , 1976). We had troubles in solving this structure, 
as could be expected. We managed to find one hepta- 
helicene molecule, incorrectly placed, and we could 
solve the structure as described below. 

(II) Space group P21/c; Z = 4 ;  one molecule per 
asymmetric unit (van den Hark & Beurskens, 1976). 
We had troubles in solving this structure, partly be- 
cause of the relatively small number of reflexions that 
could be measured. One heptahelicene molecule was 
found, also incorrectly placed, and this was used as 
described below. 

Description of the procedure 

The symmetry is supposed to be P1, and the mono- 
clinic reflexion data set is expanded using [Fobs(hfcl)[ = 


